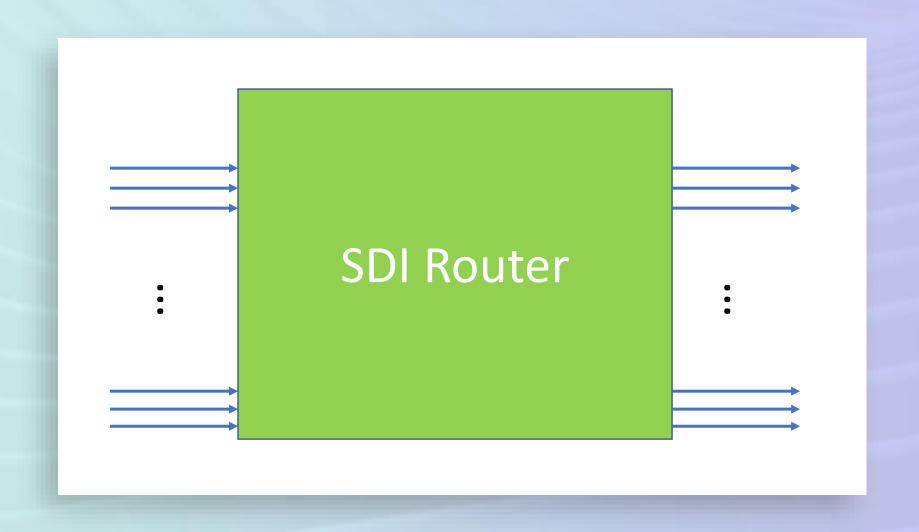
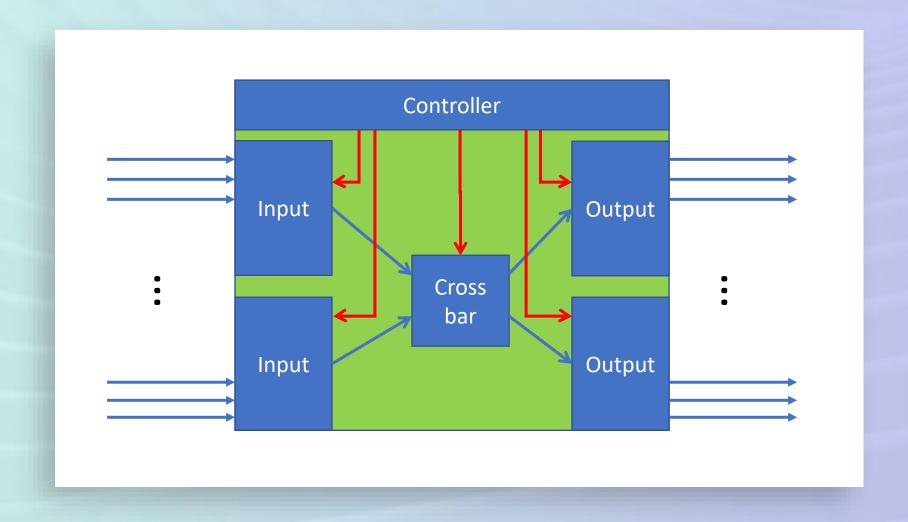
ST 2110 Launch Pad - Install and Troubleshoot

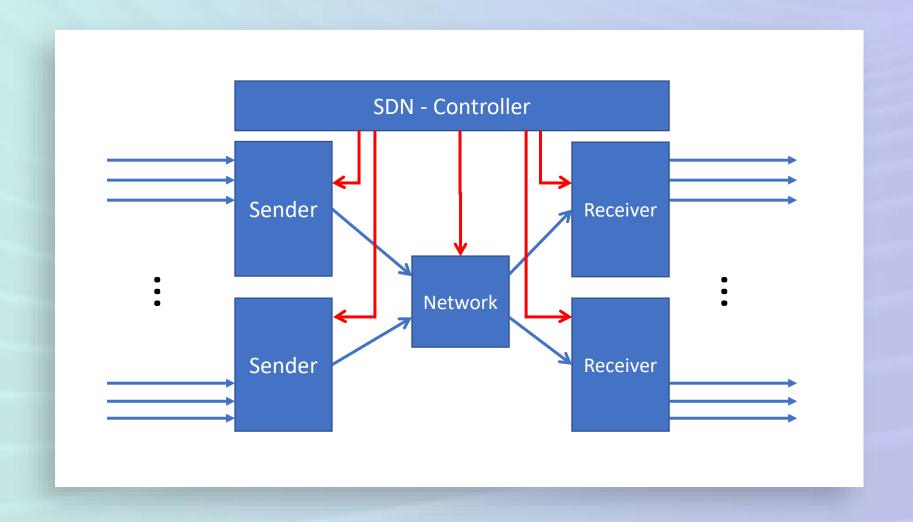
Hartmut Opfermann
Senior Solutions Architect | Qvest



Agenda

- 1. THE SDI ROUTER ANALOGY
- 2. THE LAYERED TECHNOLOGY STACK
- 3. PHYSICAL LAYER
- 4. NETWORK LAYER
- 5. NETWORK CONTROL LAYER
- 6. STREAM CONTROL LAYER
- 7. BROADCAST CONTROL LAYER


The SDI Analogy: Router


The SDI Analogy: Inside

The SDI Analogy: IP

The Layered Stack – Compared to SDI

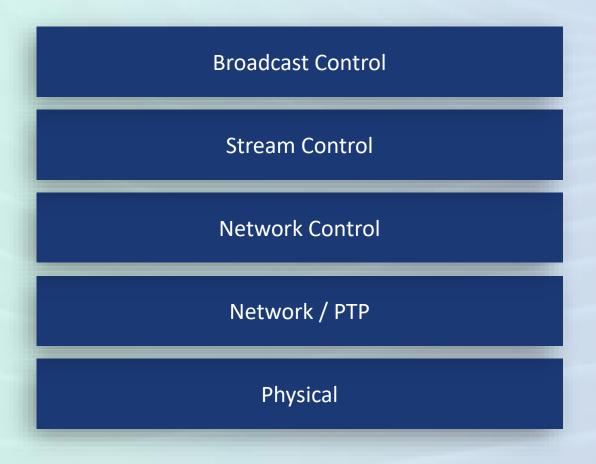
Broadcast Control

SDI

Physical

Broadcast Control

Stream Control


Network Control

Network / PTP

Physical

The Layered Stack

- Each layer provides a specific function and relies on the layer below.
- Not all layers are needed in every system.
- More than one layer might be combined in a single subsystem.
- Installation and Troubleshooting is most effective when done by layers.

Physical Layer

What is it about:

- Cables
- SFPs

What to look out for

- Is the cable correctly connected ?
- Fiber polarity and plug type (MPO connectors)
- Correct FEC type

- Switch User Interface
- DOM (Digital Optical Monitoring) statistics

MPO Connectors

- Up to 12 Fibres in one connector (typically, 8 are used)
- Breakout cables are very useful for high density (100G to 4 x 25G or 40G to 4 x 10G)
- Watch out: Female can physically be connected to female – but connection will not work.

DOM Statistics and FEC Types


```
Ethernet1/1
transceiver is present
type is 1000base-LH
name is CISCO-OPLINK
part number is 1837023160
revision is 01
serial number is OPM25150E30
nominal bitrate is 1300 MBit/sec
Link length supported for 9/125um fiber is 10 km
cisco id is 3
cisco extended id number is 4
cisco part number is 10-2625-02
cisco product id is GLC-LH-SMD
cisco version id is V02

SFP Detail Diagnostics Information (internal calibration)
```

	Current	Alarms		Warni	Warnings	
	Measurement	High	Low	High	Low	
Temperature Voltage Current Tx Power Rx Power Transmit Faul	35.00 C 3.28 V 24.12 mA -6.19 dBm -7.07 dBm lt Count = 0		-9.00 C 3.00 V 4.50 mA -13.56 dBm -23.01 dBm	85.00 C 3.50 V 64.95 mA -3.00 dBm -3.00 dBm	-5.00 C 3.10 V 5.50 mA -9.50 dBm -19.20 dBm	
Note: ++ hig	 gh-alarm; + hi	gh-warning;	low-aları	n; - low-war	ning	

auto	FEC auto
fc-fec	CL74(25/50G)
off	Turn FEC off
rs-cons16	RS FEC Consortium 1.6 (25G)
rs-fec	CL91(100G) or Consortium 1.5 (25/50G)
rs-ieee	RS FEC IEEE (25G)

Network Layer

What is it about

Switch configuration

What to look out for

- IGMP Snooping Querier (If you are using a layer 2 network)
- Addressing issues
- PTP configuration errors:
 - Domain, timer and priority values
 - Control plane policing
- Problems with PTP Grandmaster failover scenarios

- Switch user interface
- Network Management System

IGMP Snooping Querier

- Only applicable in a Layer-2 network
- If your receivers loose their flow after 30 seconds, your network has no IGMP querier
- Recommendation to not build layer-2 media networks larger than one switch.

PTP Configuration Errors

Look at the ptp counters of the interface.

Do the sync packets increase?

If not, there is probably something wrong with the switch configuration.

Do the delay request packets increase?

 If not, the end device configuration is not matching (most probably the domain)

PTP Packet Counters of Interface Eth1/33:						
Packet Type	тх	RX				
Announce	33	5825643				
Sync	40	11651217				
FollowUp	40	0				
Delay Request	11586191	0				
Delay Response	0	11586191				
PDelay Request	0	0				
PDelay Response	0	0				
PDelay Followup	0	0				
Management	23	1456154				
Signaling	0	0				

Network Control

What is it about

 Establishing the paths through a network that consists of multiple switches and links between them

What to look out for

- Are all switches reachable by the network controller?
- Is the controller showing the flow routed correctly?
- Is multicast routing the same between the network controller and the actual hardware?

- Switch UI
- Network Management System
- Network controller UI
- Flow monitoring (RTP flow monitoring, sflow)

End Device / Stream Control

What is it about:

 Connecting senders with receivers by copying SDPs from senders to receivers

What to look out for:

- Are the end devices reachable by the controller?
- Are the end devices configured with the required senders and receivers?
- Is the configuration correctly represented in NMOS?
- Is the SDP file on the sender matching the configuration?

- End Device UI
- Web browser for looking at the /x-nmos tree
- NMOS utilities

Broadcast Control

What is it about:

- Providing the User with a control interface
- Linking component flows (Association, Bouquet)

What to look out for:

- Audio channel configuration (Design Topic)
- Keep things as simple as possible

- Broadcast controller user interface
- Broadcast controller management interface
- Logs

Audio Channel Configuration

How many (mono) channels per stream?

- 1: is resource intensive (senders, receivers, flows)
- 4: compromise between 1 and 4
- 8: most compatible, but somewhat inflexible
- 16: matches SDI, but some devices don't support it
- Flexible: most complicated

General Design Thoughts

- ST2110 systems are very flexible and powerful but a significant change from exiting technologies and workflows.
- Use design decisions to adapt the many possibilities to your intended workflow.
- Don't get carried away by the possibilities. Keep things as simple as possible
- Do not completely mimic your current workflows that were based on traditional technology.
- Be prepared to learn more as you go.
- Start small, but relevant.

Qvestions?

Hartmut Opfermann

Senior Solutions Architect at Qvest

hartmut.opfermann@qvest.com

m: +49 163 3535 147

Qvest @ IBC2022: Hall 10, Booth C.25

www.qvest.com/st2110